initial commit

This commit is contained in:
jiao77
2025-03-25 01:42:26 +08:00
commit 88ca482d5d
5 changed files with 208 additions and 0 deletions

31
data_units.py Normal file
View File

@@ -0,0 +1,31 @@
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
def layout_transforms():
"""定义数据增强和预处理"""
return transforms.Compose([
transforms.Resize((256, 256)), # 调整尺寸到固定大小
transforms.RandomRotation(30), # 随机旋转(增强方向不变性)
transforms.ColorJitter(brightness=0.2, contrast=0.2), # 彩色抖动(如果使用图像数据)
transforms.ToTensor(), # 转换为张量
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化如ImageNet均值和方差
])
def layout_to_tensor(layout_path, target_size=(256, 256)):
"""将版图转换为标准化张量"""
# 实际应用中可能需要解析GDSII/LEF格式此处简化处理
img = Image.open(layout_path).convert('L') # 灰度化
img = img.resize(target_size, resample=Image.BILINEAR)
return np.array(img) / 255.0 # 归一化到[0,1]
def tile_layout(large_layout, block_size=64):
"""将大版图分割为小块(滑动窗口方式)"""
height, width = large_layout.shape
stride = block_size // 2 # 步长设置重叠区域
tiles = []
for y in range(0, height - block_size +1, stride):
for x in range(0, width - block_size +1, stride):
tile = large_layout[y:y+block_size, x:x+block_size]
tiles.append((x, y, tile))
return tiles

48
inference.py Normal file
View File

@@ -0,0 +1,48 @@
import faiss
import numpy as np
import torch
# 导入 models.rotation_cnn 模块中的 RotationInvariantNet 类
from models.rotation_cnn import RotationInvariantNet
from models.rotation_cnn import get_rotational_features
# 导入 data_utils 中的 layout_to_tensor 函数(假设该函数存在)
from data_units import layout_to_tensor # 如果 data_utils.py 存在此函数
from data_units import tile_layout
def main():
# 配置参数(需根据实际调整)
block_size = 64 # 分块尺寸
target_module_path = "target.png"
large_layout_path = "layout_large.png"
# 加载模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = RotationInvariantNet().to(device)
model.load_state_dict(torch.load("rotation_cnn.pth"))
model.eval()
# 预处理目标模块与大版图
target_tensor = layout_to_tensor(target_module_path, (block_size, block_size))
target_feat = get_rotational_features(model, torch.tensor(target_tensor).to(device))
large_layout = layout_to_tensor(large_layout_path)
tiles = tile_layout(large_layout)
# 构建特征索引使用Faiss加速
index = faiss.IndexFlatL2(64) # 特征维度由模型决定
features_db = []
for (x,y,tile) in tiles:
feat = get_rotational_features(model, torch.tensor(tile).to(device))
features_db.append(feat)
index.add(np.stack(features_db))
# 检索相似区域
D, I = index.search(target_feat[np.newaxis,:], k=10)
for idx in I[0]:
x,y,_ = tiles[idx]
print(f"匹配区域坐标: ({x}, {y}), 相似度: {D[0][idx]}")
if __name__ == "__main__":
main()

0
models/__init__.py Normal file
View File

30
models/rotation_cnn.py Normal file
View File

@@ -0,0 +1,30 @@
import torch
import torch.nn as nn
class RotationInvariantNet(nn.Module):
"""轻量级旋转不变特征提取网络"""
def __init__(self, input_channels=1, num_features=64):
super().__init__()
self.cnn = nn.Sequential(
# 基础卷积层
nn.Conv2d(input_channels, 32, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2), # 下采样
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.AdaptiveAvgPool2d((1,1)) # 全局池化获取全局特征
)
def forward(self, x):
features = self.cnn(x)
return torch.flatten(features, 1) # 展平为特征向量
def get_rotational_features(model, input_image):
"""计算输入图像所有旋转角度的特征平均值"""
rotations = [0, 90, 180, 270]
features_list = []
for angle in rotations:
rotated_img = torch.rot90(input_image, k=angle//90, dims=[2,3])
feat = model(rotated_img.unsqueeze(0))
features_list.append(feat)
return torch.mean(torch.stack(features_list), dim=0).detach().numpy()

99
train.py Normal file
View File

@@ -0,0 +1,99 @@
import os
import torch
from torch import nn, optim
from torch.utils.data import DataLoader, random_split
import numpy as np
from datetime import datetime
import argparse
# 导入项目模块(根据你的路径调整)
from models.rotation_cnn import RotationInvariantCNN # 模型实现
from data_units import LayoutDataset, layout_transforms # 数据集和预处理函数
# 设置随机种子(可选)
torch.manual_seed(42)
np.random.seed(42)
def main():
"""训练流程"""
# 解析命令行参数
parser = argparse.ArgumentParser(description="Train Rotation-Invariant Layout Matcher")
parser.add_argument("--data_dir", type=str, default="./data/train/", help="训练数据目录")
parser.add_argument("--val_split", type=float, default=0.2, help="验证集比例")
parser.add_argument("--batch_size", type=int, default=16, help="批量大小")
parser.add_argument("--epochs", type=int, default=50, help="训练轮次")
parser.add_argument("--lr", type=float, default=1e-3, help="学习率")
parser.add_argument("--model_save_dir", type=str, default="./models/", help="模型保存路径")
args = parser.parse_args()
# 创建输出目录
os.makedirs(args.model_save_dir, exist_ok=True)
# 数据加载
dataset = LayoutDataset(root_dir=args.data_dir, transform=layout_transforms())
total_samples = len(dataset)
val_size = int(total_samples * args.val_split)
train_size = total_samples - val_size
# 划分训练集和验证集
train_dataset, val_dataset = random_split(
dataset,
[train_size, val_size],
generator=torch.Generator().manual_seed(42)
)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4)
# 初始化模型、损失函数和优化器
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = RotationInvariantCNN().to(device) # 根据你的模型结构调整参数
criterion = nn.CrossEntropyLoss() # 分类任务示例,根据任务类型选择损失函数
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# 训练循环
best_val_loss = float("inf")
for epoch in range(1, args.epochs + 1):
model.train()
train_loss = 0.0
for batch_idx, (data, targets) in enumerate(train_loader):
data, targets = data.to(device), targets.to(device)
# 前向传播
outputs = model(data)
loss = criterion(outputs, targets)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
if (batch_idx + 1) % 10 == 0:
print(f"Epoch [{epoch}/{args.epochs}] Batch {batch_idx+1}/{len(train_loader)} Loss: {loss.item():.4f}")
# 验证
model.eval()
val_loss = 0.0
with torch.no_grad():
for data, targets in val_loader:
data, targets = data.to(device), targets.to(device)
outputs = model(data)
loss = criterion(outputs, targets)
val_loss += loss.item()
avg_train_loss = train_loss / len(train_loader)
avg_val_loss = val_loss / len(val_loader)
print(f"Epoch {epoch} - Train Loss: {avg_train_loss:.4f}, Val Loss: {avg_val_loss:.4f}")
# 保存最佳模型
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
torch.save(model.state_dict(), os.path.join(args.model_save_dir, f"best_model_{datetime.now().strftime('%Y%m%d%H%M')}.pth"))
print("训练完成!")
if __name__ == "__main__":
main()