115 lines
4.6 KiB
Python
115 lines
4.6 KiB
Python
# models/rord.py
|
||
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
from torchvision import models
|
||
|
||
class RoRD(nn.Module):
|
||
def __init__(self, fpn_out_channels: int = 256, fpn_levels=(2, 3, 4)):
|
||
"""
|
||
修复后的 RoRD 模型。
|
||
- 实现了共享骨干网络,以提高计算效率和减少内存占用。
|
||
- 确保检测头和描述子头使用相同尺寸的特征图。
|
||
- 新增(可选)FPN 推理路径,提供多尺度特征用于高效匹配。
|
||
"""
|
||
super(RoRD, self).__init__()
|
||
|
||
vgg16_features = models.vgg16(pretrained=False).features
|
||
|
||
# VGG16 特征各阶段索引(conv & relu 层序列)
|
||
# relu2_2 索引 8,relu3_3 索引 15,relu4_3 索引 22
|
||
self.features = vgg16_features
|
||
|
||
# 共享骨干(向后兼容单尺度路径,使用到 relu4_3)
|
||
self.backbone = nn.Sequential(*list(vgg16_features.children())[:23])
|
||
|
||
# 检测头
|
||
self.detection_head = nn.Sequential(
|
||
nn.Conv2d(512, 256, kernel_size=3, padding=1),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(256, 128, kernel_size=3, padding=1),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(128, 1, kernel_size=1),
|
||
nn.Sigmoid()
|
||
)
|
||
|
||
# 描述子头
|
||
self.descriptor_head = nn.Sequential(
|
||
nn.Conv2d(512, 256, kernel_size=3, padding=1),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(256, 128, kernel_size=3, padding=1),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(128, 128, kernel_size=1),
|
||
nn.InstanceNorm2d(128)
|
||
)
|
||
|
||
# --- FPN 组件(用于可选多尺度推理) ---
|
||
self.fpn_out_channels = fpn_out_channels
|
||
self.fpn_levels = tuple(sorted(set(fpn_levels))) # e.g., (2,3,4)
|
||
|
||
# 横向连接 1x1 将 C2(128)/C3(256)/C4(512) 对齐到相同通道数
|
||
self.lateral_c2 = nn.Conv2d(128, fpn_out_channels, kernel_size=1)
|
||
self.lateral_c3 = nn.Conv2d(256, fpn_out_channels, kernel_size=1)
|
||
self.lateral_c4 = nn.Conv2d(512, fpn_out_channels, kernel_size=1)
|
||
|
||
# 平滑 3x3 conv
|
||
self.smooth_p2 = nn.Conv2d(fpn_out_channels, fpn_out_channels, kernel_size=3, padding=1)
|
||
self.smooth_p3 = nn.Conv2d(fpn_out_channels, fpn_out_channels, kernel_size=3, padding=1)
|
||
self.smooth_p4 = nn.Conv2d(fpn_out_channels, fpn_out_channels, kernel_size=3, padding=1)
|
||
|
||
# 共享的 FPN 检测/描述子头(输入通道为 fpn_out_channels)
|
||
self.det_head_fpn = nn.Sequential(
|
||
nn.Conv2d(fpn_out_channels, 128, kernel_size=3, padding=1),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(128, 1, kernel_size=1),
|
||
nn.Sigmoid(),
|
||
)
|
||
self.desc_head_fpn = nn.Sequential(
|
||
nn.Conv2d(fpn_out_channels, 128, kernel_size=3, padding=1),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(128, 128, kernel_size=1),
|
||
nn.InstanceNorm2d(128),
|
||
)
|
||
|
||
def forward(self, x: torch.Tensor, return_pyramid: bool = False):
|
||
if not return_pyramid:
|
||
# 向后兼容的单尺度路径(relu4_3)
|
||
features = self.backbone(x)
|
||
detection_map = self.detection_head(features)
|
||
descriptors = self.descriptor_head(features)
|
||
return detection_map, descriptors
|
||
|
||
# --- FPN 路径:提取 C2/C3/C4 ---
|
||
c2, c3, c4 = self._extract_c234(x)
|
||
p4 = self.lateral_c4(c4)
|
||
p3 = self.lateral_c3(c3) + F.interpolate(p4, size=c3.shape[-2:], mode="nearest")
|
||
p2 = self.lateral_c2(c2) + F.interpolate(p3, size=c2.shape[-2:], mode="nearest")
|
||
|
||
p4 = self.smooth_p4(p4)
|
||
p3 = self.smooth_p3(p3)
|
||
p2 = self.smooth_p2(p2)
|
||
|
||
pyramid = {}
|
||
if 4 in self.fpn_levels:
|
||
pyramid["P4"] = (self.det_head_fpn(p4), self.desc_head_fpn(p4), 8)
|
||
if 3 in self.fpn_levels:
|
||
pyramid["P3"] = (self.det_head_fpn(p3), self.desc_head_fpn(p3), 4)
|
||
if 2 in self.fpn_levels:
|
||
pyramid["P2"] = (self.det_head_fpn(p2), self.desc_head_fpn(p2), 2)
|
||
return pyramid
|
||
|
||
def _extract_c234(self, x: torch.Tensor):
|
||
"""提取 VGG 中间层特征:C2(relU2_2), C3(relu3_3), C4(relu4_3)."""
|
||
c2 = c3 = c4 = None
|
||
for i, layer in enumerate(self.features):
|
||
x = layer(x)
|
||
if i == 8: # relu2_2
|
||
c2 = x
|
||
elif i == 15: # relu3_3
|
||
c3 = x
|
||
elif i == 22: # relu4_3
|
||
c4 = x
|
||
break
|
||
assert c2 is not None and c3 is not None and c4 is not None
|
||
return c2, c3, c4 |