training: learning_rate: 5.0e-5 batch_size: 8 num_epochs: 50 patch_size: 256 scale_jitter_range: [0.8, 1.2] model: fpn: enabled: true out_channels: 256 levels: [2, 3, 4] norm: "bn" # 新增:可切换骨干网络配置(默认为 vgg16,保持与现有实现一致) backbone: name: "vgg16" # 可选:vgg16 | resnet34 | efficientnet_b0 pretrained: false # 是否加载 ImageNet 预训练权重(如可用) # 新增:可选注意力机制(默认关闭,避免影响现有结果) attention: enabled: false type: "none" # 可选:none | cbam | se places: [] # 插入位置:backbone_high | det_head | desc_head(数组) matching: keypoint_threshold: 0.5 ransac_reproj_threshold: 5.0 min_inliers: 15 pyramid_scales: [0.75, 1.0, 1.5] inference_window_size: 1024 inference_stride: 768 use_fpn: true nms: enabled: true radius: 4 score_threshold: 0.5 evaluation: iou_threshold: 0.5 logging: use_tensorboard: true log_dir: "runs" experiment_name: "baseline" paths: layout_dir: "path/to/layouts" save_dir: "path/to/save" val_img_dir: "path/to/val/images" val_ann_dir: "path/to/val/annotations" template_dir: "path/to/templates" model_path: "path/to/save/model_final.pth" # 数据增强与合成数据配置(可选) augment: elastic: enabled: false alpha: 40 sigma: 6 alpha_affine: 6 prob: 0.3 photometric: brightness_contrast: true gauss_noise: true synthetic: enabled: false png_dir: "data/synthetic/png" ratio: 0.0 # 0~1,训练时混合的合成样本比例 diffusion: enabled: false png_dir: "data/synthetic_diff/png" ratio: 0.0 # 0~1,训练时混合的扩散样本比例