chenge to english version
This commit is contained in:
140
train.py
140
train.py
@@ -12,14 +12,14 @@ import argparse
|
||||
import logging
|
||||
from datetime import datetime
|
||||
|
||||
# 导入项目模块
|
||||
# Import project modules
|
||||
import config
|
||||
from models.rord import RoRD
|
||||
from utils.data_utils import get_transform
|
||||
|
||||
# 设置日志记录
|
||||
# Setup logging
|
||||
def setup_logging(save_dir):
|
||||
"""设置训练日志记录"""
|
||||
"""Setup training logging"""
|
||||
if not os.path.exists(save_dir):
|
||||
os.makedirs(save_dir)
|
||||
|
||||
@@ -34,14 +34,14 @@ def setup_logging(save_dir):
|
||||
)
|
||||
return logging.getLogger(__name__)
|
||||
|
||||
# --- (已修改) 训练专用数据集类 ---
|
||||
# --- (Modified) Training-specific dataset class ---
|
||||
class ICLayoutTrainingDataset(Dataset):
|
||||
def __init__(self, image_dir, patch_size=256, transform=None, scale_range=(1.0, 1.0)):
|
||||
self.image_dir = image_dir
|
||||
self.image_paths = [os.path.join(image_dir, f) for f in os.listdir(image_dir) if f.endswith('.png')]
|
||||
self.patch_size = patch_size
|
||||
self.transform = transform
|
||||
self.scale_range = scale_range # 新增尺度范围参数
|
||||
self.scale_range = scale_range # New scale range parameter
|
||||
|
||||
def __len__(self):
|
||||
return len(self.image_paths)
|
||||
@@ -51,47 +51,47 @@ class ICLayoutTrainingDataset(Dataset):
|
||||
image = Image.open(img_path).convert('L')
|
||||
W, H = image.size
|
||||
|
||||
# --- 新增:尺度抖动数据增强 ---
|
||||
# 1. 随机选择一个缩放比例
|
||||
# --- New: Scale jittering data augmentation ---
|
||||
# 1. Randomly select a scaling factor
|
||||
scale = np.random.uniform(self.scale_range[0], self.scale_range[1])
|
||||
# 2. 根据缩放比例计算需要从原图裁剪的尺寸
|
||||
# 2. Calculate crop size from original image based on scaling factor
|
||||
crop_size = int(self.patch_size / scale)
|
||||
|
||||
# 确保裁剪尺寸不超过图像边界
|
||||
if crop_size > min(W, H):
|
||||
crop_size = min(W, H)
|
||||
|
||||
# 3. 随机裁剪
|
||||
# 3. Random cropping
|
||||
x = np.random.randint(0, W - crop_size + 1)
|
||||
y = np.random.randint(0, H - crop_size + 1)
|
||||
patch = image.crop((x, y, x + crop_size, y + crop_size))
|
||||
|
||||
# 4. 将裁剪出的图像块缩放回标准的 patch_size
|
||||
# 4. Resize cropped patch back to standard patch_size
|
||||
patch = patch.resize((self.patch_size, self.patch_size), Image.Resampling.LANCZOS)
|
||||
# --- 尺度抖动结束 ---
|
||||
# --- Scale jittering end ---
|
||||
|
||||
# --- 新增:额外的数据增强 ---
|
||||
# 亮度调整
|
||||
# --- New: Additional data augmentation ---
|
||||
# Brightness adjustment
|
||||
if np.random.random() < 0.5:
|
||||
brightness_factor = np.random.uniform(0.8, 1.2)
|
||||
patch = patch.point(lambda x: int(x * brightness_factor))
|
||||
|
||||
# 对比度调整
|
||||
# Contrast adjustment
|
||||
if np.random.random() < 0.5:
|
||||
contrast_factor = np.random.uniform(0.8, 1.2)
|
||||
patch = patch.point(lambda x: int(((x - 128) * contrast_factor) + 128))
|
||||
|
||||
# 添加噪声
|
||||
# Add noise
|
||||
if np.random.random() < 0.3:
|
||||
patch_np = np.array(patch, dtype=np.float32)
|
||||
noise = np.random.normal(0, 5, patch_np.shape)
|
||||
patch_np = np.clip(patch_np + noise, 0, 255)
|
||||
patch = Image.fromarray(patch_np.astype(np.uint8))
|
||||
# --- 额外数据增强结束 ---
|
||||
# --- Additional data augmentation end ---
|
||||
|
||||
patch_np = np.array(patch)
|
||||
|
||||
# 实现8个方向的离散几何变换 (这部分逻辑不变)
|
||||
# Implement 8-direction discrete geometric transformations (this logic remains unchanged)
|
||||
theta_deg = np.random.choice([0, 90, 180, 270])
|
||||
is_mirrored = np.random.choice([True, False])
|
||||
cx, cy = self.patch_size / 2.0, self.patch_size / 2.0
|
||||
@@ -117,57 +117,57 @@ class ICLayoutTrainingDataset(Dataset):
|
||||
H_tensor = torch.from_numpy(H[:2, :]).float()
|
||||
return patch, transformed_patch, H_tensor
|
||||
|
||||
# --- 特征图变换与损失函数 (改进版) ---
|
||||
# --- (Modified) Feature map transformation and loss functions (improved version) ---
|
||||
def warp_feature_map(feature_map, H_inv):
|
||||
B, C, H, W = feature_map.size()
|
||||
grid = F.affine_grid(H_inv, feature_map.size(), align_corners=False).to(feature_map.device)
|
||||
return F.grid_sample(feature_map, grid, align_corners=False)
|
||||
|
||||
def compute_detection_loss(det_original, det_rotated, H):
|
||||
"""改进的检测损失:使用BCE损失替代MSE"""
|
||||
"""Improved detection loss: use BCE loss instead of MSE"""
|
||||
with torch.no_grad():
|
||||
H_inv = torch.inverse(torch.cat([H, torch.tensor([0.0, 0.0, 1.0]).view(1, 1, 3).repeat(H.shape[0], 1, 1)], dim=1))[:, :2, :]
|
||||
warped_det_rotated = warp_feature_map(det_rotated, H_inv)
|
||||
|
||||
# 使用BCE损失,更适合二分类问题
|
||||
# Use BCE loss, more suitable for binary classification problems
|
||||
bce_loss = F.binary_cross_entropy(det_original, warped_det_rotated)
|
||||
|
||||
# 添加平滑L1损失作为辅助
|
||||
# Add smooth L1 loss as auxiliary
|
||||
smooth_l1_loss = F.smooth_l1_loss(det_original, warped_det_rotated)
|
||||
|
||||
return bce_loss + 0.1 * smooth_l1_loss
|
||||
|
||||
def compute_description_loss(desc_original, desc_rotated, H, margin=1.0):
|
||||
"""IC版图专用几何感知描述子损失:编码曼哈顿几何特征"""
|
||||
"""IC layout-specific geometric-aware descriptor loss: encodes Manhattan geometric features"""
|
||||
B, C, H_feat, W_feat = desc_original.size()
|
||||
|
||||
# 曼哈顿几何感知采样:重点采样边缘和角点区域
|
||||
# Manhattan geometric-aware sampling: focus on edge and corner regions
|
||||
num_samples = 200
|
||||
|
||||
# 生成曼哈顿对齐的采样网格(水平和垂直优先)
|
||||
# Generate Manhattan-aligned sampling grid (horizontal and vertical priority)
|
||||
h_coords = torch.linspace(-1, 1, int(np.sqrt(num_samples)), device=desc_original.device)
|
||||
w_coords = torch.linspace(-1, 1, int(np.sqrt(num_samples)), device=desc_original.device)
|
||||
|
||||
# 增加曼哈顿方向的采样密度
|
||||
# Increase sampling density in Manhattan directions
|
||||
manhattan_h = torch.cat([h_coords, torch.zeros_like(h_coords)])
|
||||
manhattan_w = torch.cat([torch.zeros_like(w_coords), w_coords])
|
||||
manhattan_coords = torch.stack([manhattan_h, manhattan_w], dim=1).unsqueeze(0).repeat(B, 1, 1)
|
||||
|
||||
# 采样anchor点
|
||||
# Sample anchor points
|
||||
anchor = F.grid_sample(desc_original, manhattan_coords.unsqueeze(1), align_corners=False).squeeze(2).transpose(1, 2)
|
||||
|
||||
# 计算对应的正样本点
|
||||
# Calculate corresponding positive samples
|
||||
coords_hom = torch.cat([manhattan_coords, torch.ones(B, manhattan_coords.size(1), 1, device=manhattan_coords.device)], dim=2)
|
||||
M_inv = torch.inverse(torch.cat([H, torch.tensor([0.0, 0.0, 1.0]).view(1, 1, 3).repeat(H.shape[0], 1, 1)], dim=1))
|
||||
coords_transformed = (coords_hom @ M_inv.transpose(1, 2))[:, :, :2]
|
||||
positive = F.grid_sample(desc_rotated, coords_transformed.unsqueeze(1), align_corners=False).squeeze(2).transpose(1, 2)
|
||||
|
||||
# IC版图专用负样本策略:考虑重复结构
|
||||
# IC layout-specific negative sample strategy: consider repetitive structures
|
||||
with torch.no_grad():
|
||||
# 1. 几何感知的负样本:曼哈顿变换后的不同区域
|
||||
# 1. Geometric-aware negative samples: different regions after Manhattan transformation
|
||||
neg_coords = []
|
||||
for b in range(B):
|
||||
# 生成曼哈顿变换后的坐标(90度旋转等)
|
||||
# Generate coordinates after Manhattan transformation (90-degree rotation, etc.)
|
||||
angles = [0, 90, 180, 270]
|
||||
for angle in angles:
|
||||
if angle != 0:
|
||||
@@ -181,55 +181,55 @@ def compute_description_loss(desc_original, desc_rotated, H, margin=1.0):
|
||||
|
||||
neg_coords = torch.stack(neg_coords[:B*num_samples//2]).reshape(B, -1, 2)
|
||||
|
||||
# 2. 特征空间困难负样本
|
||||
# 2. Feature space hard negative samples
|
||||
negative_candidates = F.grid_sample(desc_rotated, neg_coords, align_corners=False).squeeze(2).transpose(1, 2)
|
||||
|
||||
# 3. 曼哈顿距离约束的困难样本选择
|
||||
# 3. Manhattan distance constrained hard sample selection
|
||||
anchor_expanded = anchor.unsqueeze(2).expand(-1, -1, negative_candidates.size(1), -1)
|
||||
negative_expanded = negative_candidates.unsqueeze(1).expand(-1, anchor.size(1), -1, -1)
|
||||
|
||||
# 使用曼哈顿距离而非欧氏距离
|
||||
# Use Manhattan distance instead of Euclidean distance
|
||||
manhattan_dist = torch.sum(torch.abs(anchor_expanded - negative_expanded), dim=3)
|
||||
hard_indices = torch.topk(manhattan_dist, k=anchor.size(1)//2, largest=False)[1]
|
||||
negative = torch.gather(negative_candidates, 1, hard_indices)
|
||||
|
||||
# IC版图专用的几何一致性损失
|
||||
# 1. 曼哈顿方向一致性损失
|
||||
# IC layout-specific geometric consistency loss
|
||||
# 1. Manhattan direction consistency loss
|
||||
manhattan_loss = 0
|
||||
for i in range(anchor.size(1)):
|
||||
# 计算水平和垂直方向的几何一致性
|
||||
# Calculate geometric consistency in horizontal and vertical directions
|
||||
anchor_norm = F.normalize(anchor[:, i], p=2, dim=1)
|
||||
positive_norm = F.normalize(positive[:, i], p=2, dim=1)
|
||||
|
||||
# 鼓励描述子对曼哈顿变换不变
|
||||
# Encourage descriptor invariance to Manhattan transformations
|
||||
cos_sim = torch.sum(anchor_norm * positive_norm, dim=1)
|
||||
manhattan_loss += torch.mean(1 - cos_sim)
|
||||
|
||||
# 2. 稀疏性正则化(IC版图特征稀疏)
|
||||
# 2. Sparsity regularization (IC layout features are sparse)
|
||||
sparsity_loss = torch.mean(torch.abs(anchor)) + torch.mean(torch.abs(positive))
|
||||
|
||||
# 3. 二值化特征距离(处理二值化输入)
|
||||
# 3. Binary feature distance (handles binary input)
|
||||
binary_loss = torch.mean(torch.abs(torch.sign(anchor) - torch.sign(positive)))
|
||||
|
||||
# 综合损失
|
||||
triplet_loss = nn.TripletMarginLoss(margin=margin, p=1, reduction='mean') # 使用L1距离
|
||||
# Combined loss
|
||||
triplet_loss = nn.TripletMarginLoss(margin=margin, p=1, reduction='mean') # Use L1 distance
|
||||
geometric_triplet = triplet_loss(anchor, positive, negative)
|
||||
|
||||
return geometric_triplet + 0.1 * manhattan_loss + 0.01 * sparsity_loss + 0.05 * binary_loss
|
||||
|
||||
# --- (已修改) 主函数与命令行接口 ---
|
||||
# --- (Modified) Main function and command-line interface ---
|
||||
def main(args):
|
||||
# 设置日志记录
|
||||
# Setup logging
|
||||
logger = setup_logging(args.save_dir)
|
||||
|
||||
logger.info("--- 开始训练 RoRD 模型 ---")
|
||||
logger.info(f"训练参数: Epochs={args.epochs}, Batch Size={args.batch_size}, LR={args.lr}")
|
||||
logger.info(f"数据目录: {args.data_dir}")
|
||||
logger.info(f"保存目录: {args.save_dir}")
|
||||
logger.info("--- Starting RoRD model training ---")
|
||||
logger.info(f"Training parameters: Epochs={args.epochs}, Batch Size={args.batch_size}, LR={args.lr}")
|
||||
logger.info(f"Data directory: {args.data_dir}")
|
||||
logger.info(f"Save directory: {args.save_dir}")
|
||||
|
||||
transform = get_transform()
|
||||
|
||||
# 在数据集初始化时传入尺度抖动范围
|
||||
# Pass scale jittering range during dataset initialization
|
||||
dataset = ICLayoutTrainingDataset(
|
||||
args.data_dir,
|
||||
patch_size=config.PATCH_SIZE,
|
||||
@@ -237,35 +237,35 @@ def main(args):
|
||||
scale_range=config.SCALE_JITTER_RANGE
|
||||
)
|
||||
|
||||
logger.info(f"数据集大小: {len(dataset)}")
|
||||
logger.info(f"Dataset size: {len(dataset)}")
|
||||
|
||||
# 分割训练集和验证集
|
||||
# Split training and validation sets
|
||||
train_size = int(0.8 * len(dataset))
|
||||
val_size = len(dataset) - train_size
|
||||
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
|
||||
|
||||
logger.info(f"训练集大小: {len(train_dataset)}, 验证集大小: {len(val_dataset)}")
|
||||
logger.info(f"Training set size: {len(train_dataset)}, Validation set size: {len(val_dataset)}")
|
||||
|
||||
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)
|
||||
val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4)
|
||||
|
||||
model = RoRD().cuda()
|
||||
logger.info(f"模型参数数量: {sum(p.numel() for p in model.parameters()):,}")
|
||||
logger.info(f"Model parameter count: {sum(p.numel() for p in model.parameters()):,}")
|
||||
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-4)
|
||||
|
||||
# 添加学习率调度器
|
||||
# Add learning rate scheduler
|
||||
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
||||
optimizer, mode='min', factor=0.5, patience=5
|
||||
)
|
||||
|
||||
# 早停机制
|
||||
# Early stopping mechanism
|
||||
best_val_loss = float('inf')
|
||||
patience_counter = 0
|
||||
patience = 10
|
||||
|
||||
for epoch in range(args.epochs):
|
||||
# 训练阶段
|
||||
# Training phase
|
||||
model.train()
|
||||
total_train_loss = 0
|
||||
total_det_loss = 0
|
||||
@@ -284,7 +284,7 @@ def main(args):
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
# 梯度裁剪,防止梯度爆炸
|
||||
# Gradient clipping to prevent gradient explosion
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
|
||||
|
||||
optimizer.step()
|
||||
@@ -300,7 +300,7 @@ def main(args):
|
||||
avg_det_loss = total_det_loss / len(train_dataloader)
|
||||
avg_desc_loss = total_desc_loss / len(train_dataloader)
|
||||
|
||||
# 验证阶段
|
||||
# Validation phase
|
||||
model.eval()
|
||||
total_val_loss = 0
|
||||
total_val_det_loss = 0
|
||||
@@ -325,20 +325,20 @@ def main(args):
|
||||
avg_val_det_loss = total_val_det_loss / len(val_dataloader)
|
||||
avg_val_desc_loss = total_val_desc_loss / len(val_dataloader)
|
||||
|
||||
# 学习率调度
|
||||
# Learning rate scheduling
|
||||
scheduler.step(avg_val_loss)
|
||||
|
||||
logger.info(f"--- Epoch {epoch+1} 完成 ---")
|
||||
logger.info(f"训练 - Total: {avg_train_loss:.4f}, Det: {avg_det_loss:.4f}, Desc: {avg_desc_loss:.4f}")
|
||||
logger.info(f"验证 - Total: {avg_val_loss:.4f}, Det: {avg_val_det_loss:.4f}, Desc: {avg_val_desc_loss:.4f}")
|
||||
logger.info(f"学习率: {optimizer.param_groups[0]['lr']:.2e}")
|
||||
logger.info(f"--- Epoch {epoch+1} completed ---")
|
||||
logger.info(f"Training - Total: {avg_train_loss:.4f}, Det: {avg_det_loss:.4f}, Desc: {avg_desc_loss:.4f}")
|
||||
logger.info(f"Validation - Total: {avg_val_loss:.4f}, Det: {avg_val_det_loss:.4f}, Desc: {avg_val_desc_loss:.4f}")
|
||||
logger.info(f"Learning rate: {optimizer.param_groups[0]['lr']:.2e}")
|
||||
|
||||
# 早停检查
|
||||
# Early stopping check
|
||||
if avg_val_loss < best_val_loss:
|
||||
best_val_loss = avg_val_loss
|
||||
patience_counter = 0
|
||||
|
||||
# 保存最佳模型
|
||||
# Save best model
|
||||
if not os.path.exists(args.save_dir):
|
||||
os.makedirs(args.save_dir)
|
||||
save_path = os.path.join(args.save_dir, 'rord_model_best.pth')
|
||||
@@ -353,14 +353,14 @@ def main(args):
|
||||
'epochs': args.epochs
|
||||
}
|
||||
}, save_path)
|
||||
logger.info(f"最佳模型已保存至: {save_path}")
|
||||
logger.info(f"Best model saved to: {save_path}")
|
||||
else:
|
||||
patience_counter += 1
|
||||
if patience_counter >= patience:
|
||||
logger.info(f"早停触发!{patience} 个epoch没有改善")
|
||||
logger.info(f"Early stopping triggered! No improvement for {patience} epochs")
|
||||
break
|
||||
|
||||
# 保存最终模型
|
||||
# Save final model
|
||||
save_path = os.path.join(args.save_dir, 'rord_model_final.pth')
|
||||
torch.save({
|
||||
'epoch': args.epochs,
|
||||
@@ -373,11 +373,11 @@ def main(args):
|
||||
'epochs': args.epochs
|
||||
}
|
||||
}, save_path)
|
||||
logger.info(f"最终模型已保存至: {save_path}")
|
||||
logger.info("训练完成!")
|
||||
logger.info(f"Final model saved to: {save_path}")
|
||||
logger.info("Training completed!")
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="训练 RoRD 模型")
|
||||
parser = argparse.ArgumentParser(description="Train RoRD model")
|
||||
parser.add_argument('--data_dir', type=str, default=config.LAYOUT_DIR)
|
||||
parser.add_argument('--save_dir', type=str, default=config.SAVE_DIR)
|
||||
parser.add_argument('--epochs', type=int, default=config.NUM_EPOCHS)
|
||||
|
||||
Reference in New Issue
Block a user