chenge to english version
This commit is contained in:
@@ -7,18 +7,18 @@ from torchvision import models
|
||||
class RoRD(nn.Module):
|
||||
def __init__(self):
|
||||
"""
|
||||
修复后的 RoRD 模型。
|
||||
- 实现了共享骨干网络,以提高计算效率和减少内存占用。
|
||||
- 确保检测头和描述子头使用相同尺寸的特征图。
|
||||
Repaired RoRD model.
|
||||
- Implements shared backbone network to improve computational efficiency and reduce memory usage.
|
||||
- Ensures detection head and descriptor head use feature maps of the same size.
|
||||
"""
|
||||
super(RoRD, self).__init__()
|
||||
|
||||
vgg16_features = models.vgg16(pretrained=False).features
|
||||
|
||||
# 共享骨干网络 - 只使用到 relu4_3,确保特征图尺寸一致
|
||||
# Shared backbone network - only uses up to relu4_3 to ensure consistent feature map dimensions
|
||||
self.backbone = nn.Sequential(*list(vgg16_features.children())[:23])
|
||||
|
||||
# 检测头
|
||||
# Detection head
|
||||
self.detection_head = nn.Sequential(
|
||||
nn.Conv2d(512, 256, kernel_size=3, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
@@ -28,7 +28,7 @@ class RoRD(nn.Module):
|
||||
nn.Sigmoid()
|
||||
)
|
||||
|
||||
# 描述子头
|
||||
# Descriptor head
|
||||
self.descriptor_head = nn.Sequential(
|
||||
nn.Conv2d(512, 256, kernel_size=3, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
@@ -39,10 +39,10 @@ class RoRD(nn.Module):
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# 共享特征提取
|
||||
# Shared feature extraction
|
||||
features = self.backbone(x)
|
||||
|
||||
# 检测器和描述子使用相同的特征图
|
||||
# Detector and descriptor use the same feature maps
|
||||
detection_map = self.detection_head(features)
|
||||
descriptors = self.descriptor_head(features)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user