add scale robust way

This commit is contained in:
Jiao77
2025-06-09 01:49:13 +08:00
parent 7cc1a5b8d2
commit 98f6709768
4 changed files with 254 additions and 110 deletions

199
match.py
View File

@@ -12,69 +12,174 @@ import config
from models.rord import RoRD
from utils.data_utils import get_transform
def extract_keypoints_and_descriptors(model, image, kp_thresh):
# --- 特征提取函数 (基本无变动) ---
def extract_keypoints_and_descriptors(model, image_tensor, kp_thresh):
with torch.no_grad():
detection_map, desc = model(image)
binary_map = (detection_map > kp_thresh).float()
coords = torch.nonzero(binary_map[0, 0]).float()
keypoints_input = coords[:, [1, 0]] * 8.0 # Stride of descriptor is 8
detection_map, desc = model(image_tensor)
device = detection_map.device
binary_map = (detection_map > kp_thresh).squeeze(0).squeeze(0)
coords = torch.nonzero(binary_map).float() # y, x
if len(coords) == 0:
return torch.tensor([], device=device), torch.tensor([], device=device)
descriptors = F.grid_sample(desc, coords.flip(1).view(1, -1, 1, 2) / torch.tensor([(desc.shape[3]-1)/2, (desc.shape[2]-1)/2], device=desc.device) - 1, align_corners=True).squeeze().T
descriptors = F.normalize(descriptors, p=2, dim=1)
return keypoints_input, descriptors
# 描述子采样
coords_for_grid = coords.flip(1).view(1, -1, 1, 2) # N, 2 -> 1, N, 1, 2 (x,y)
# 归一化到 [-1, 1]
coords_for_grid = coords_for_grid / torch.tensor([(desc.shape[3]-1)/2, (desc.shape[2]-1)/2], device=device) - 1
descriptors = F.grid_sample(desc, coords_for_grid, align_corners=True).squeeze().T
descriptors = F.normalize(descriptors, p=2, dim=1)
# 将关键点坐标从特征图尺度转换回图像尺度
# VGG到relu4_3的下采样率为8
keypoints = coords.flip(1) * 8.0 # x, y
return keypoints, descriptors
# --- (新增) 滑动窗口特征提取函数 ---
def extract_features_sliding_window(model, large_image, transform):
"""
使用滑动窗口从大图上提取所有关键点和描述子
"""
print("使用滑动窗口提取大版图特征...")
device = next(model.parameters()).device
W, H = large_image.size
window_size = config.INFERENCE_WINDOW_SIZE
stride = config.INFERENCE_STRIDE
all_kps = []
all_descs = []
for y in range(0, H, stride):
for x in range(0, W, stride):
# 确保窗口不越界
x_end = min(x + window_size, W)
y_end = min(y + window_size, H)
# 裁剪窗口
patch = large_image.crop((x, y, x_end, y_end))
# 预处理
patch_tensor = transform(patch).unsqueeze(0).to(device)
# 提取特征
kps, descs = extract_keypoints_and_descriptors(model, patch_tensor, config.KEYPOINT_THRESHOLD)
if len(kps) > 0:
# 将局部坐标转换为全局坐标
kps[:, 0] += x
kps[:, 1] += y
all_kps.append(kps)
all_descs.append(descs)
if not all_kps:
return torch.tensor([], device=device), torch.tensor([], device=device)
print(f"大版图特征提取完毕,共找到 {sum(len(k) for k in all_kps)} 个关键点。")
return torch.cat(all_kps, dim=0), torch.cat(all_descs, dim=0)
# --- 互近邻匹配 (无变动) ---
def mutual_nearest_neighbor(descs1, descs2):
if len(descs1) == 0 or len(descs2) == 0:
return torch.empty((0, 2), dtype=torch.int64)
sim = descs1 @ descs2.T
nn12 = torch.max(sim, dim=1)
nn21 = torch.max(sim, dim=0)
ids1 = torch.arange(0, sim.shape[0], device=sim.device)
mask = (ids1 == nn21.indices[nn12.indices])
matches = torch.stack([ids1[mask], nn12.indices[mask]], dim=1)
return matches.cpu().numpy()
return matches
def match_template_to_layout(model, layout_image, template_image):
layout_kps, layout_descs = extract_keypoints_and_descriptors(model, layout_image, config.KEYPOINT_THRESHOLD)
template_kps, template_descs = extract_keypoints_and_descriptors(model, template_image, config.KEYPOINT_THRESHOLD)
# --- (已修改) 多尺度、多实例匹配主函数 ---
def match_template_multiscale(model, layout_image, template_image, transform):
"""
在不同尺度下搜索模板,并检测多个实例
"""
# 1. 对大版图使用滑动窗口提取全部特征
layout_kps, layout_descs = extract_features_sliding_window(model, layout_image, transform)
if len(layout_kps) < config.MIN_INLIERS:
print("从大版图中提取的关键点过少,无法进行匹配。")
return []
active_layout_mask = torch.ones(len(layout_kps), dtype=bool, device=layout_kps.device)
found_instances = []
active_layout_mask = torch.ones(len(layout_kps), dtype=bool, device=layout_kps.device)
# 2. 多实例迭代检测
while True:
current_indices = torch.nonzero(active_layout_mask).squeeze(1)
if len(current_indices) < config.MIN_INLIERS:
current_active_indices = torch.nonzero(active_layout_mask).squeeze(1)
# 如果剩余活动关键点过少,则停止
if len(current_active_indices) < config.MIN_INLIERS:
break
current_layout_kps, current_layout_descs = layout_kps[current_indices], layout_descs[current_indices]
matches = mutual_nearest_neighbor(template_descs, current_layout_descs)
current_layout_kps = layout_kps[current_active_indices]
current_layout_descs = layout_descs[current_active_indices]
if len(matches) < 4: break
best_match_info = {'inliers': 0, 'H': None, 'src_pts': None, 'dst_pts': None, 'mask': None}
src_pts = template_kps[matches[:, 0]].cpu().numpy()
dst_pts = current_layout_kps[matches[:, 1]].cpu().numpy()
# 3. 图像金字塔:遍历模板的每个尺度
print("在新尺度下搜索模板...")
for scale in config.PYRAMID_SCALES:
W, H = template_image.size
new_W, new_H = int(W * scale), int(H * scale)
# 缩放模板
scaled_template = template_image.resize((new_W, new_H), Image.LANCZOS)
template_tensor = transform(scaled_template).unsqueeze(0).to(layout_kps.device)
# 提取缩放后模板的特征
template_kps, template_descs = extract_keypoints_and_descriptors(model, template_tensor, config.KEYPOINT_THRESHOLD)
if len(template_kps) < 4: continue
H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, config.RANSAC_REPROJ_THRESHOLD)
if H is None or mask.sum() < config.MIN_INLIERS:
# 匹配当前尺度的模板和活动状态的版图特征
matches = mutual_nearest_neighbor(template_descs, current_layout_descs)
if len(matches) < 4: continue
# RANSAC
# 注意模板关键点坐标需要还原到原始尺寸才能计算正确的H
src_pts = template_kps[matches[:, 0]].cpu().numpy() / scale
dst_pts_indices = current_active_indices[matches[:, 1]]
dst_pts = layout_kps[dst_pts_indices].cpu().numpy()
H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, config.RANSAC_REPROJ_THRESHOLD)
if H is not None and mask.sum() > best_match_info['inliers']:
best_match_info = {'inliers': mask.sum(), 'H': H, 'mask': mask, 'scale': scale, 'dst_pts': dst_pts}
# 4. 如果在所有尺度中找到了最佳匹配,则记录并屏蔽
if best_match_info['inliers'] > config.MIN_INLIERS:
print(f"找到一个匹配实例!内点数: {best_match_info['inliers']}, 使用的模板尺度: {best_match_info['scale']:.2f}x")
inlier_mask = best_match_info['mask'].ravel().astype(bool)
inlier_layout_kps = best_match_info['dst_pts'][inlier_mask]
x_min, y_min = inlier_layout_kps.min(axis=0)
x_max, y_max = inlier_layout_kps.max(axis=0)
instance = {'x': int(x_min), 'y': int(y_min), 'width': int(x_max - x_min), 'height': int(y_max - y_min), 'homography': best_match_info['H']}
found_instances.append(instance)
# 屏蔽已匹配区域的关键点,以便检测下一个实例
kp_x, kp_y = layout_kps[:, 0], layout_kps[:, 1]
region_mask = (kp_x >= x_min) & (kp_x <= x_max) & (kp_y >= y_min) & (kp_y <= y_max)
active_layout_mask[region_mask] = False
print(f"剩余活动关键点: {active_layout_mask.sum()}")
else:
# 如果在所有尺度下都找不到好的匹配,则结束搜索
print("在所有尺度下均未找到新的匹配实例,搜索结束。")
break
inlier_mask = mask.ravel().astype(bool)
# 区域屏蔽逻辑
inlier_layout_kps = dst_pts[inlier_mask]
x_min, y_min = inlier_layout_kps.min(axis=0)
x_max, y_max = inlier_layout_kps.max(axis=0)
instance = {'x': int(x_min), 'y': int(y_min), 'width': int(x_max - x_min), 'height': int(y_max - y_min), 'homography': H}
found_instances.append(instance)
kp_x, kp_y = layout_kps[:, 0], layout_kps[:, 1]
region_mask = (kp_x >= x_min) & (kp_x <= x_max) & (kp_y >= y_min) & (kp_y <= y_max)
active_layout_mask[region_mask] = False
print(f"找到实例,内点数: {mask.sum()}。剩余活动关键点: {active_layout_mask.sum()}")
return found_instances
def visualize_matches(layout_path, template_path, bboxes, output_path):
def visualize_matches(layout_path, bboxes, output_path):
layout_img = cv2.imread(layout_path)
for i, bbox in enumerate(bboxes):
x, y, w, h = bbox['x'], bbox['y'], bbox['width'], bbox['height']
@@ -83,8 +188,9 @@ def visualize_matches(layout_path, template_path, bboxes, output_path):
cv2.imwrite(output_path, layout_img)
print(f"可视化结果已保存至: {output_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="使用 RoRD 进行模板匹配")
parser = argparse.ArgumentParser(description="使用 RoRD 进行多尺度模板匹配")
parser.add_argument('--model_path', type=str, default=config.MODEL_PATH)
parser.add_argument('--layout', type=str, required=True)
parser.add_argument('--template', type=str, required=True)
@@ -96,13 +202,14 @@ if __name__ == "__main__":
model.load_state_dict(torch.load(args.model_path))
model.eval()
layout_tensor = transform(Image.open(args.layout).convert('L')).unsqueeze(0).cuda()
template_tensor = transform(Image.open(args.template).convert('L')).unsqueeze(0).cuda()
detected_bboxes = match_template_to_layout(model, layout_tensor, template_tensor)
layout_image = Image.open(args.layout).convert('L')
template_image = Image.open(args.template).convert('L')
detected_bboxes = match_template_multiscale(model, layout_image, template_image, transform)
print("\n检测到的边界框:")
for bbox in detected_bboxes:
print(bbox)
if args.output:
visualize_matches(args.layout, args.template, detected_bboxes, args.output)
visualize_matches(args.layout, detected_bboxes, args.output)