添加数据增强方案以及扩散生成模型的想法

This commit is contained in:
Jiao77
2025-10-20 21:14:03 +08:00
parent d6d00cf088
commit 08f488f0d8
22 changed files with 1903 additions and 190 deletions

View File

@@ -0,0 +1,38 @@
#!/usr/bin/env python3
"""
Sample layout patches using a trained diffusion model (skeleton).
Outputs raster PNGs into a target directory compatible with current training pipeline (no H pairing).
Current status: CLI skeleton and TODOs only.
"""
from __future__ import annotations
import argparse
from pathlib import Path
def main() -> None:
parser = argparse.ArgumentParser(description="Sample layout patches from diffusion model (skeleton)")
parser.add_argument("--ckpt", type=str, required=True, help="Path to trained diffusion checkpoint or HF repo id")
parser.add_argument("--out_dir", type=str, required=True, help="Directory to write sampled PNGs")
parser.add_argument("--num", type=int, default=200)
parser.add_argument("--image_size", type=int, default=256)
parser.add_argument("--guidance", type=float, default=5.0)
parser.add_argument("--steps", type=int, default=50)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--cond_dir", type=str, default=None, help="Optional condition maps directory")
parser.add_argument("--cond_types", type=str, nargs="*", default=None, help="e.g., edge skeleton dist")
args = parser.parse_args()
out_dir = Path(args.out_dir)
out_dir.mkdir(parents=True, exist_ok=True)
# TODO: load pipeline from ckpt, set scheduler, handle conditions if provided,
# sample args.num images, save as PNG files into out_dir.
print("[TODO] Implement diffusion sampling and PNG saving.")
if __name__ == "__main__":
main()