Files
LayoutMatch/models/superpoint_custom.py
2025-03-31 14:49:04 +08:00

47 lines
2.1 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
class SuperPointCustom(nn.Module):
def __init__(self, num_channels=3): # num_channels 为版图通道数
super(SuperPointCustom, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
c1, c2, c3, c4, c5, d1 = 64, 64, 128, 128, 256, 256
# 编码器
self.conv1a = nn.Conv2d(num_channels, c1, kernel_size=3, stride=1, padding=1)
self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1)
self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1)
self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1)
self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1)
# 检测头
self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0) # 65 = 8x8 + dustbin
# 描述符头
self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
self.convDb = nn.Conv2d(c5, d1, kernel_size=1, stride=1, padding=0)
def forward(self, x):
# 编码器
x = self.relu(self.conv1a(x))
x = self.relu(self.conv1b(x))
x = self.pool(x)
x = self.relu(self.conv2a(x))
x = self.relu(self.conv2b(x))
x = self.pool(x)
x = self.relu(self.conv3a(x))
x = self.relu(self.conv3b(x))
x = self.pool(x)
x = self.relu(self.conv4a(x))
x = self.relu(self.conv4b(x))
# 检测头
cPa = self.relu(self.convPa(x))
semi = self.convPb(cPa) # [B, 65, H/8, W/8]
# 描述符头
cDa = self.relu(self.convDa(x))
desc = self.convDb(cDa) # [B, 256, H/8, W/8]
desc = F.normalize(desc, p=2, dim=1) # L2归一化
return semi, desc