import torch import cv2 import numpy as np from models.superpoint_custom import SuperPointCustom def get_keypoints_from_heatmap(semi, threshold=0.015): semi = semi.squeeze().cpu().numpy() # [65, H/8, W/8] prob = cv2.softmax(semi, axis=0)[:-1] # [64, H/8, W/8] prob = prob.reshape(8, 8, semi.shape[1], semi.shape[2]) prob = prob.transpose(0, 2, 1, 3).reshape(8*semi.shape[1], 8*semi.shape[2]) # [H, W] keypoints = [] for y in range(prob.shape[0]): for x in range(prob.shape[1]): if prob[y, x] > threshold: keypoints.append(cv2.KeyPoint(x, y, 1)) return keypoints def get_descriptors_from_map(desc, keypoints): desc = desc.squeeze().cpu().numpy() # [256, H/8, W/8] descriptors = [] scale = 8 for kp in keypoints: x, y = int(kp.pt[0] / scale), int(kp.pt[1] / scale) if 0 <= x < desc.shape[2] and 0 <= y < desc.shape[1]: descriptors.append(desc[:, y, x]) return np.array(descriptors) def match_and_estimate(layout_path, module_path, model_path, num_channels, device='cuda'): model = SuperPointCustom(num_channels=num_channels).to(device) model.load_state_dict(torch.load(model_path, map_location=device)) model.eval() layout = np.load(layout_path) # [C, H, W] module = np.load(module_path) # [C, H, W] layout_tensor = torch.from_numpy(layout).float().unsqueeze(0).to(device) module_tensor = torch.from_numpy(module).float().unsqueeze(0).to(device) with torch.no_grad(): semi_layout, desc_layout = model(layout_tensor) semi_module, desc_module = model(module_tensor) kp_layout = get_keypoints_from_heatmap(semi_layout) desc_layout = get_descriptors_from_map(desc_layout, kp_layout) kp_module = get_keypoints_from_heatmap(semi_module) desc_module = get_descriptors_from_map(desc_module, kp_module) bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True) matches = bf.match(desc_module, desc_layout) matches = sorted(matches, key=lambda x: x.distance) src_pts = np.float32([kp_module[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp_layout[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2) H, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) h, w = module.shape[1], module.shape[2] corners = np.float32([[0, 0], [w, 0], [w, h], [0, h]]).reshape(-1, 1, 2) transformed_corners = cv2.perspectiveTransform(corners, H) x_min, y_min = np.min(transformed_corners, axis=0).ravel().astype(int) x_max, y_max = np.max(transformed_corners, axis=0).ravel().astype(int) theta = np.arctan2(H[1, 0], H[0, 0]) * 180 / np.pi print(f"Matched region: [{x_min}, {y_min}, {x_max}, {y_max}], Rotation: {theta:.2f} degrees") return x_min, y_min, x_max, y_max, theta if __name__ == "__main__": layout_path = "data/large_layout.npy" module_path = "data/small_module.npy" model_path = "superpoint_custom_model.pth" num_channels = 3 # 替换为实际通道数 match_and_estimate(layout_path, module_path, model_path, num_channels)